9 research outputs found

    Uncertainty propagation for flood forecasting in the Alps: different views and impacts from MAP D-PHASE

    Get PDF
    D-PHASE was a Forecast Demonstration Project of theWorldWeather Research Programme (WWRP) related to the Mesoscale Alpine Programme (MAP). Its goal was to demonstrate the reliability and quality of operational forecasting of orographically influenced (determined) precipitation in the Alps and its consequences on the distribution of run-off characteristics. A special focus was, of course, on heavy-precipitation events. The D-PHASE Operations Period (DOP) ran from June to November 2007, during which an end-to-end forecasting system was operated covering many individual catchments in the Alps, with their water authorities, civil protection organizations or other end users. The forecasting system’s core piece was a Visualization Platform where precipitation and flood warnings from some 30 atmospheric and 7 hydrological models (both deterministic and probabilistic) and corresponding model fields were displayed in uniform and comparable formats. Also, meteograms, nowcasting information and end user communication was made available to all the forecasters, users and end users. D-PHASE information was assessed and used by some 50 different groups ranging from atmospheric forecasters to civil protection authorities or water management bodies. In the present contribution, D-PHASE is briefly presented along with its outstanding scientific results and, in particular, the lessons learnt with respect to uncertainty propagation. A focus is thereby on the transfer of ensemble prediction information into the hydrological community and its use with respect to other aspects of societal impact. Objective verification of forecast quality is contrasted to subjective quality assessments during the project (end user workshops, questionnaires) and some general conclusions concerning forecast demonstration projects are drawn

    Uncertainty propagation for flood forecasting in the Alps: different views and impacts from MAP D-PHASE

    No full text
    D-PHASE was a Forecast Demonstration Project of the World Weather Research Programme (WWRP) related to the Mesoscale Alpine Programme (MAP). Its goal was to demonstrate the reliability and quality of operational forecasting of orographically influenced (determined) precipitation in the Alps and its consequences on the distribution of run-off characteristics. A special focus was, of course, on heavy-precipitation events. <br><br> The D-PHASE Operations Period (DOP) ran from June to November~2007, during which an end-to-end forecasting system was operated covering many individual catchments in the Alps, with their water authorities, civil protection organizations or other end users. The forecasting system's core piece was a <i>Visualization Platform</i> where precipitation and flood warnings from some 30 atmospheric and 7 hydrological models (both deterministic and probabilistic) and corresponding model fields were displayed in uniform and comparable formats. Also, meteograms, nowcasting information and end user communication was made available to all the forecasters, users and end users. D-PHASE information was assessed and used by some 50 different groups ranging from atmospheric forecasters to civil protection authorities or water management bodies. <br><br> In the present contribution, D-PHASE is briefly presented along with its outstanding scientific results and, in particular, the lessons learnt with respect to uncertainty propagation. A focus is thereby on the transfer of ensemble prediction information into the hydrological community and its use with respect to other aspects of societal impact. Objective verification of forecast quality is contrasted to subjective quality assessments during the project (end user workshops, questionnaires) and some general conclusions concerning forecast demonstration projects are drawn

    MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems

    No full text
    Mesoscale Alpine Programme Demonstration of Probabilistic Hydrological and Atmospheric Simulation of Flood Events (MAP D-PHASE) is a forecast demonstration project aiming at demonstrating recent improvements in the operational use of end-to-end forecasting system consisting of atmospheric models, hydrological prediction systems, nowcasting tools and warnings for end-users. Both deterministic and ensemble prediction systems (EPSs) have been implemented for the European Alps (atmospheric models) and a selection of mesoscale river basins (hydrological models) in Central Europe. A first insight into MAP D-PHASE with focus on operational ensemble hydrological simulations is presented here. Copyright ď›™2008 Royal Meteorological Societ

    MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems

    No full text
    Mesoscale Alpine Programme Demonstration of Probabilistic Hydrological and Atmospheric Simulation of Flood Events (MAP D-PHASE) is a forecast demonstration project aiming at demonstrating recent improvements in the operational use of end-to-end forecasting system consisting of atmospheric models, hydrological prediction systems, nowcasting tools and warnings for end-users. Both deterministic and ensemble prediction systems (EPSs) have been implemented for the European Alps (atmospheric models) and a selection of mesoscale river basins (hydrological models) in Central Europe. A first insight into MAP D-PHASE with focus on operational ensemble hydrological simulations is presented here

    MAP D-PHASE: Real-time Demonstration of Weather Forecast Quality in the Alpine Region

    No full text
    Demonstration of probabilistic hydrological and atmospheric simulation of flood events in the Alpine region (D-PHASE) is made by the Forecast Demonstration Project in connection with the Mesoscale Alpine Programme (MAP). Its focus lies in the end-to-end flood forecasting in a mountainous region such as the Alps and surrounding lower ranges. Its scope ranges from radar observations and atmospheric and hydrological modeling to the decision making by the civil protection agents. More than 30 atmospheric high-resolution deterministic and probabilistic models coupled to some seven hydrological models in various combinations provided real-time online information. This information was available for many different catchments across the Alps over a demonstration period of 6 months in summer/ fall 2007. The Web-based exchange platform additionally contained nowcasting information from various operational services and feedback channels for the forecasters and end users. D-PHASE applications include objective model verification and intercomparison, the assessment of (subjective) end user feedback, and evaluation of the overall gain from the coupling of the various components in the end-to-end forecasting system

    Uncertainty propagation for flood forecasting in the Alps: different views and impacts from MAP D-PHASE

    No full text
    D-PHASE was a Forecast Demonstration Project of the World Weather Research Programme (WWRP) related to the Mesoscale Alpine Programme (MAP). Its goal was to demonstrate the reliability and quality of operational forecasting of orographically influenced (determined) precipitation in the Alps and its consequences on the distribution of run-off characteristics. A special focus was, of course, on heavy-precipitation events. The D-PHASE Operations Period (DOP) ran from June to November~2007, during which an end-to-end forecasting system was operated covering many individual catchments in the Alps, with their water authorities, civil protection organizations or other end users. The forecasting system's core piece was a Visualization Platform where precipitation and flood warnings from some 30 atmospheric and 7 hydrological models (both deterministic and probabilistic) and corresponding model fields were displayed in uniform and comparable formats. Also, meteograms, nowcasting information and end user communication was made available to all the forecasters, users and end users. D-PHASE information was assessed and used by some 50 different groups ranging from atmospheric forecasters to civil protection authorities or water management bodies. In the present contribution, D-PHASE is briefly presented along with its outstanding scientific results and, in particular, the lessons learnt with respect to uncertainty propagation. A focus is thereby on the transfer of ensemble prediction information into the hydrological community and its use with respect to other aspects of societal impact. Objective verification of forecast quality is contrasted to subjective quality assessments during the project (end user workshops, questionnaires) and some general conclusions concerning forecast demonstration projects are drawn.© Author(s) 201
    corecore